1차 2차

타이틀

8 Very Promising Bioprinting Projects

게시판 상세보기
작성일 2020-04-07 조회수 109
20-04-07

 

Bioprinting is a method that enables cellular structures to be made from bioinks loaded with stem cells.
Layer by layer, the biomaterial is deposited to create skin, tissue or even an organ. Bioprinting projects
are growing, and each new project is one-step closer to being a fully functional and viable solution.
Laboratories and research centers are bioprinting human livers, kidneys and hearts. The objective is
to make them suitable for transplantation, and viable long-term solutions. In fact, this method could
allow to cope with the lack of organ donors, and to better study and understand certain diseases.
There is still progress to be made but we wanted to present the main bioprinting projects in the
listing below, including 3D printed organs and other human body parts!
 

A bioprinted heart

 

Last April, a team of Israeli researchers presented a bioprinted heart the size of a cherry. The organ
consisted of cells, blood vessels, ventricles and chambers: a first for the industry. The researchers
developed a hydrogel from the patient’s own fat tissue, reducing the risk of rejection once implanted.
The printing process would have taken only 3 to 4 hours. The heart is no bigger than a rabbit’s heart,
but it’s an encouraging start. Note also the results obtained by BIOLIFE4D: the American company
has succeeded in bioprinting a miniature human heart with ventricles and cavities.
 

3d printed organs


Bioprinting a kidney

 

In 2011, Professor Anthony Atala, Director of the Wake Forest Institute for Regenerative Medicine,
presented a 3D bioprinted kidney for the first time. Within seven hours, his team was able to design
this organ from stem cells. The kidney could not live for very long, but the project was full of promise.
Since then, the printing work has continued. At Harvard, for example, researchers have succeeded in bioprinting
a 3D model of a vascularized proximal tubule to better understand the structure and function of the kidney.

 


3d printed organ


Bioprinted corneas

 

The World Health Organisation estimates that 10 million people worldwide require surgery to prevent
corneal blindness, and 4.9 million already suffer from complete blindness due to corneal scarring.
In 2019, researchers from the University of Newcastle developed a 3D printed artificial cornea for
the first time that could be transplanted for people in need. After studying and gathering data from
a volunteer’s eye, the researchers were able to design a 3D model of the cornea. One of the most
challenging aspects was using the right materials to hold the concave shape of the cornea as well as
finding an ink thin enough to squirt through a 3D bioprinter’s nozzle. Using only one healthy human
cornea they were able to 3D print 50 artificial ones; a breakthrough advancement in ophthalmology.
 


Bioprinted ovaries

 

In May 2017, researchers from Northwestern University were developing a solution for women with
fertility issues. Back then, they had succeeded in implanting a bioprinted ovary in a sterile mouse.
Two years later, the researchers made some very promising progress. They were able to map the
location of structural proteins in a pig ovary, allowing them to create a bioink to bioprint functional
ovaries for human use
. Additionally, the team explained that their methodology could be used to
identify other types of proteins that could facilitate the creation of bioinks for other organs!
 

3d printed organs


Bioprinting a mini liver

 

Researchers at the University of São Paulo in Brazil have succeeded in creating miniature versions of
a human liver from blood cells. The process took only 90 days, from the collection of the patient’s
blood to the production of the tissue. These liver organoids, developed using 3D bioprinting technologies,
integrate the functionalities of the organ in question. These include the production of vital proteins, the
storage of vitamins and the secretion of bile. To create the liver tissue, the team used the Inkredible
bioprinter, marketed by the manufacturer CELLINK, one of the most recognized in the industry.

 


Bioprinted ear project

 

This bioprinting project was made possible through a collaboration between Queensland University of
Technology (QUT) and Maia Van Mulligan, to help her regain her hearing. The HearSay Foundation, also
involved in the recovery of the little girl, states that the 3D printed ear is fully functional and will allow
Maia to hear again. The ear implant was created using the patient’s cartilage cells, reducing the risk of
rejection once implanted. In addition, this type of custom-made bioprinting solution is actually less-expensive
than other alternatives.

 

3d printed organs


Bioprinting a pancreas

 

A team of scientists from the “Foundation for Research and Development of Science” has set itself
the goal of developing a functional 3D printed pancreas by 2020, which will help diabetic patients
avoid having to inject insulin and minimize the risk of related secondary complications, which often
lead to death. For the bioprinting, a biopsy of the patient, and stem cell harvest is first performed.
The cells are then converted into cells capable of producing insulin and glucagon.
These are then used as bioink to print the pancreas.

 

3d printed organs


Bioprinted skin

 

The market for bioprinted skin is growing steadily: according to BBC Research, the market will grow
from 24.7 billion dollars in 2018 to 109.9 billion dollars in 2023. The startup company Poietis has
developed 4D printed skin, which in the future could be transplanted for victims of burns or skin
diseases. A software called Cytocentric CAD has been developed specifically for the rinting process,
which is designed to meet the challenge of imitating the body’s own tissue. This is 4D printing, as tissue
components are precisely arranged in space and are also subject to the action of self-organization
processes of the cells. By taking self-organizing processes into account, it is possible to create highly
complex tissue structures that are very close to those of the human body. The 4D printed skin is clinically
tested in a collaboration with the Assistance Publique – Hôpitaux de Marseille. Poietis’ long-term goal is
to place a bio-printer in every hospital to enable the production of personalized tissues and improve the
waiting time of patients waiting for transplants
,” says Dr. Fabien Guillemot, founder of Poietis.

 


What do you think of these bioprinting projects? Let us know in a comment below or on our 
Facebook and Twitter pages!
Find even more videos like the one below on our Youtube channel!

 

https://youtu.be/64-ujrKUxLc

첨부파일
이전 다음 글보기
이전글 [이슈메이커] 인공장기 시장의 양적·질적 발전 위한 초석 마련
다음글
맨위로